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Abstract The iterative algorithm of Niblack and Nigam for matrix eigenvalues is
derived in a simple manner and is improved so as to permit reliable numerical calcu-
lations. The computational capabilities of the algorithm are tested on a bound state
problem and it is then shown how to extract eigenvector information from numerical
eigenvalues. A complexified form of the algorithm is shown to permit the accurate
calculation of complex resonant state energies.
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1 Introduction

In 1970 Niblack and Nigam [1] described an iterative algorithm for the calculation of
matrix eigenvalues. They entitled their paper “an alternative to perturbation theory”
and pointed out that, although their equations were derived in a manner resembling
that used in the treatment of Brillouin—Wigner perturbation theory, the resulting cal-
culation would work even for the case of strong perturbations (as measured by the
magnitude of the matrix elements of the perturbing potential V in a basis set which is
composed of the eigenfunctions of the unperturbed Hamiltonian). Although the final
algorithm is quite simple to apply, the derivation of the algorithm given in [1] was
lengthy and complicated and the only numerical application given was to the case of
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a harmonic oscillator with a trivial quadratic perturbation. These two features of [1]
presumably explain why the method has not been taken up by other workers; a lengthy
literature search did not reveal any subsequent use of the method in works dealing with
either perturbation theory or matrix eigenvalues.

In the present work, we give a simplified derivation of that part of the algorithm
which permits the calculation of matrix eigenvalues and point out that it can be used
in different ways, whereas in [1] only one approach was envisaged. In [1] the case of
real matrices and eigenvalues only was considered and the iterative procedure gave a
sequence of increments to be added to an initial eigenvalue estimate. The final eigen-
value was thus found from the sum of these successive increments, so that questions
of convergence could arise in principle, even though the method was more effective
than a traditional perturbation approach. In a modern version of the method there
are two obvious improvements which can be made. First, a complex variable version
of the method can be constructed, making possible the calculation of the complex
eigenvalues associated with resonance states. Second, a real or complex form of the
Wynn algorithm can be used to deal with cases in which the computed sequence of
increments does not converge rapidly to a finite sum.

In Sect. 2 we give an approach to the derivation of the eigenvalue algorithm which
is more simple and direct than that of [1]. In Sect. 3 we outline some links between
the Niblack—Nigam method and other techniques of eigenvalue calculation. Section 4
gives some bound state test calculations which explore the numerical performance of
the algorithm. Section 5 shows that a direct search variant of the original method of [1]
permits calculation of the eigenvalues even when the iterative form of the algorithm
leads to a divergence. Section 6 explains how the use of an eigenvalue shift method can
give selected components of a normalized eigenvector. Section 7 extends the iterative
method by using a complex set of basis functions to study some complex resonant
state energies. Section 8§ gives a brief discussion.

2 Derivation of the algorithm

We start with the standard assumption that we have a set of normalized basis functions
[n) which are the eigenfunctions with energy E; of an unperturbed Hamiltonian Hy.
The matrix of the perturbed Hamiltonian H = Hy + V is then set up in this basis.
We wish to find the perturbed eigenvalue € which arises from the initial energy Ep
of the unperturbed state | I). The perturbed wave function W is taken (as usual) to
have an inner product of unity with the unperturbed wave function and so we can set
U = & + |I), where ® is orthogonal to | I). The perturbed eigenvalue equation can
thus be written in the form

(H-€)®o+(H-€)[I)=0 ey

Taking an inner product from the left with |I) and remembering the orthogonality
properties as well as the two terms included in H, we can re-arrange the resulting
terms to obtain the standard equation
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€E=E/ +|VIV) @)

This equation, although of a familiar form, is NOT here associated with a perturbation
expansion involving various orders of A for a perturbation AV. A simple way to obtain
the results of [1] is to postulate a tentative iterative form for Eq. (1):

H-€Em)P+H-En+1)|I)=0 3

We now encounter the technical problem which was solved by a more complicated
route in [1] ; we wish to obtain an eigenvalue algorithm while avoiding the explicit
calculation of the unknown wave function. We apply a linear operator A from the left
and then take an inner product from the left with | I). The resulting equation is

(IIAH—-€EMm) @)+ dA|AH-En+ 1)T)=0 “

We do not know & but we DO know that it must be some linear combination of the
basis states | m) which specifically excludes | I). Thus, if the operator A renders zero
all the off-diagonal matrix elements (I|A (H — € (n))| m) then the first term in Eq. (4)
must be zero. The second term must then also be zero. Remembering that it is the
matrix of H— € (n) which is being acted upon by A, we can rewrite the result that the
second element on the right in (4) is zero as follows:

IAH-€m) ) = A [A(EM+ 1) —€Mm)) | D )

If the operator A also has the property that it leaves | I) invariant then the surviving
diagonal element gives us the shift in the € estimate and thus gives an operational
meaning to our postulated iterative procedure. At first it might appear that finding an
operator A with the desired properties might be difficult. However, on remembering
the methods associated with Gaussian elimination, we see that the traditional process
of subtracting a multiple of a row of the matrix H—€(n) from other rows would be able
to produce the required results. To eliminate the (I, J) element of the matrix (H—€(n))
a multiple of row J is subtracted from row I; multiples of row J are also subtracted
from the rows K with K > J so as to render the (K, J) element zero (thus ensuring that
the use of later rows does not disturb the zero value of the (I, J) element. The row I is
only acted UPON and does not participate in the subtraction process (this is the way in
which the invariance of | I) is expressed in the row subtraction process). When all the
off-diagonal elements (I, J) have been rendered zero by the row subtraction process
then the remaining diagonal (I, I) element gives the shift €(n + 1) — €(n) (as shown
by Eq. (5)) and the process is repeated for the matrix (H—€(n+ 1)). The idea behind
the work of [1] is that the process will converge fairly quickly to give the correct value
of the perturbed eigenvalue €. We undertake a numerical exploration of this idea later
in this work.
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3 Some links with other approaches

It is clear that convergence of the iterative process described above would produce a
version of the matrix H — € in which ALL the elements in row I were zero, so that the
determinant of the matrix would necessarily be zero. This is the traditional criterion
which is used to find the eigenvalues of a matrix (the secular equation approach).The
novelty of the Niblack—Nigam method is that the (I, I) element alone, when it is not
zero, directly gives the numerical correction to the eigenvalue, whereas more tradi-
tional approaches would involve root-finding formulae, based on several values of the
full determinant (of which the (I, I) element is only one factor).

Rendering zero the off-diagonal elements of a row in the matrix is reminiscent of
the Bloch wave operator approach [2], which renders zero the off-diagonal elements
in a column. Indeed, the basic element in a row operation is a matrix with just one
element different from the unit matrix, as is the matrix which appears in the single
cycle method associated with the wave operator approach [2]. However, the wave
operator approach uses full (two sided) similarity transformations of the H matrix,
while the present method uses an operator A which acts from the left on the varying
matrix H — €(n). A similarity transformation leaves the matrix spectrum invariant, so
that an isolated diagonal element in a row directly gives an eigenvalue. By contrast an
operator acting from the left will not maintain the spectrum invariant but the row oper-
ations in A will leave the determinant of H —€(n) unchanged and a single factor in the
determinant (that is, the (I, I) element) suffices to give the eigenvalue correction. The
Niblack—Nigam method uses only linear operations, whereas the Bloch wave operator
approach involves the more difficult solution of a nonlinear equation.

In the process of row subtraction which represents the operator A it is clear that it is
possible for some initially zero elements in row I to be rendered non-zero by the very
subtractions which deliberately render zero the initially non-zero elements. Tracing
the process through, it follows that all the rows in the matrix (except I) are in general
required to participate in the subtraction process. However, this feature is a necessary
part of ALL matrix eigenvalue techniques, since it ensures that the eigenvalues can
change as the dimension of the matrix is increased.

One obvious practical feature in the numerical application of the Niblack—Nigam
method is that the matrix H is only calculated once, with a copy C being used in the
formation of the sequence of matrices H — €(n). In our calculations we allowed H to
be a complex matrix, so that both bound states and resonances could be treated. Such
a generalization was not, of course, envisaged in [1].

4 Some test bound state calculations

In [1] only a very simple numerical example was given and so we have used as a
test problem the more modern one of a quartically perturbed oscillator. We set up the
matrix of the Hamiltonian

H=-D?+x>+x*=[-D> + Wx’] +x* = (W — Dx? (6)
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Table 1 The first 5 even parity eigenvalues for the case W = 8 and a 50 x 50 matrix

I E NI
1 1.392351641530292 13
2 8.655049957759310 19
3 18.05755743630326 24
4 28.83533845950425 19
5 40.69038608210644 14

NI is the maximum number of iterations which suffices to find each eigenvalue as €(0) varies from 0 to 50.
NI has only a very weak dependence on €(0)

taking as a basis set the eigenfunctions of the oscillator Hamiltonian in the square
bracket. For this “renormalized” problem the perturbation is relatively weak and so
should be suitable to test an iterative approach. When setting up the program to carry
out the calculation we have to provide for a variable choice of the unperturbed state | I),
which we associate with row I in the matrix. Thus the rows involved in the subtraction
process will skip over row I and the surviving (I, I) diagonal element will give the
increment €(n + 1) — €(n).

In the first calculation we used a 50 x 50 matrix with W = 8 and set the ini-
tial value €(0) to be the diagonal element H(I, I), letting I range from 1 to 5
and using an even parity basis set (see Table1). For each I value the method
converged in less than 15 iterations to give accurate eigenvalues. The calcula-
tion was repeated with €(0) varying between 0 and 50 for each I value, since
the choice H(I, I) might appear to be copying standard perturbation theory too
closely. The method performs equally well under these more extreme condi-
tions, showing that (as commented in Sect. 2) the method is not reproducing a
sequence of energy approximations which are those of a traditional perturbation
series. The successive € estimates show an alternating convergence to the accu-
rate eigenvalue, which would render the sequence suitable for treatment by the
Wynn algorithm, although this is hardly necessary for these calculations. One
feature was noteworthy: the eigenvalue obtained was determined by the value
of the index I and not by the numerical value of €(0). This is presumably
because the method finds the eigenvector with the greatest overlap with the ref-
erence state |I); the derivation in Sect.2 assumed that this overlap is set at the
value 1.

When the perturbation is made very strong by changing to a basis set with
W =1 then the calculation produces a reasonable convergence for the ground state but
diverges for the higher states. The divergent sequence is not even alternating and so
the Wynn algorithm is of little help. An improvement is obtained by using a relaxation
parameter RE of 1/2 or 1/4 to multiply the predicted shift in € at each step. The lowest
two eigenvalues then come out correctly for the indices I = 1 and I = 2, respectively,
although a larger number of iterations is required. However, the higher eigenvalues
come out sometimes in reversed order and sometimes are repeated as I is increased,
with the further complication that the detailed behavior varies with the numerical value
of the relaxation parameter RE.

@ Springer



934 J Math Chem (2010) 47:929-936

Table 2 The approximate roots

of F(€) =0 as found by the scan =1 =2
described in Sect. 5, for the case ~ E F E F
W =1, using a fixed I value and
varying€ in steps of 0.001 1.392352 —6.7(—4) 1.392351 —2.1(=2)
1.687662 4.0(3)
8.482640 1.93) 8.655050 —1.5(-2)
Note the very large F(€ + d€) 8.655050 —4.0(=2)
associated with the partner roots 17.952521 3.3(3) 15.868195 1.0(5)
and the negative sign of
18.057560 —6.9(-2 18.057558 —2.4(-3
F(€ + d€) for the true eqiured =2 =3
roots. The root associated with 28.791091 134 27.271703 3.8(4)
the chosen I does not have a 28.835344 —4.1(—1) 28.835339 —8.2(-3)
partner root. The numerical 40.671960 7.4(4) 39.691045 5.9(5)
values shown have been severely
truncated. 40.690398 —1.2(0) 40.690386 —1.7(=2)

5 A Direct search approach

In the W =1 calculation we deliberately pushed the iterative method to breaking point
by using a very strong perturbation; for a weaker perturbation Ax* with A = 0, 2 (for
example) the iterative method still works satisfactorily. In [1] the authors simply com-
mented that after a few iterations “it becomes clear whether the iterative method is
converging or not” but did not suggest any remedy for the case of non-convergence.
The relaxation parameter approach is only a partial and inconsistent aid for the difficult
cases and so we tried a scanning approach. The trial € value was varied in steps of
0.001 from 0 to 50.00 for several fixed I values, with the computer program adapted to
find those points at which F(€) = [H — €] (I, I) changes sign between € and € + d€
and to calculate the linearly interpolated € value for which F(€) = 0. The output
of the program is the interpolated € value and also F(€ + d€). Table 2 shows some
results for this calculation. Even for a fixed I the direct scan gives all the required
eigenvalues in the scanned region. There is an unexpected side effect in that those
eigenvalues not arising from the chosen I value have a partner zero with a very large
value of F(€ 4 d€). The true approximate eigenvalues can be isolated, since they
have a negative (and very small) value of F(€ 4-d €). This scanning calculation shows
that the original approach of [1] can be modified to yield the eigenvalues even when
the iterative form of the calculation (the only one envisaged in [1]) fails to converge
satisfactorily. The simple scanning program can, of course, be augmented by adding a
secant or Newton’s method roorfinder to it to refine the eigenvalues to high precision.

6 Using energies to analyze the eigenvector
Since we noted in the calculation with W = 8 that the I value determines the resulting
eigenvalue for a wide range of €(0) values, the question naturally arises of whether

the erratic behavior for the case W = 1 indicates that for that case the I-th eigenvector
actually does NOT have the I-th basis vector as its dominant component. Since we
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Table 3 The values of A(J )2 as

2 2 2
found by the energy shift AQ) A®) AG)
method of Sect. 6, for the case
W=1 and for the even parity 0.1076 0.3337 0.2415
states with =3, 4, 5 4 0.1558 0.0335 0.0497

5 0.1469 0.0017 0.0976

have deliberately obtained a simple eigenvalue algorithm by carefully eliminating the
unknown eigenvector from the calculation, it might seem necessary to construct it by
inverse iteration in order to check this point. However, we can check the coefficients
of basis vectors 3, 4 and 5 in the eigenvectors by remembering some simple principles
of first order perturbation theory. If we add a small increment B to the (J, J) element
of a matrix then the shift produced in the K-th eigenvalue is given by an expectation
value which can quickly be seen to be B A(K, J )2, where A (K, J) is the coefficient of
the basis vector J in the expansion of the NORMALIZED K-th eigenvector. We thus
have an energy based method for obtaining numerical estimates of selected eigenvec-
tor components. A value of § = 0.0001 is quite small enough to check the question
raised in this section. The results of the calculation, shown in Table 3, show that our
conjecture was correct and reveals how strongly the basis states are coupled by the
strong perturbation associated with the case W = 1.

7 Some resonant state calculations

For the first test calculations we studied the real bound state energies associated with
the use of a positive A value in the perturbation Ax*. Giving A a small negative value
is also of interest from a modern point of view. The potential x> — Ax* has a central
well with an outer region in which the potential descends downwards to minus infin-
ity. In a time-dependent approach a wave packet initially localized in the central well
would leak out into the outer region in a quantum mechanical tunneling process. This
tunneling processes arising in a time-dependent approach shows up in the more easy
time-independent approach via complex eigenvalues of form ER + i EI, with EI being
proportional to the inverse of the tunneling lifetime. These complex eigenvalues can
be studied by a process of complexification, in which the basis functions are taken
to be the eigenfunctions of the Hamiltonian —D? + (WR +iWI)x2. This is achieved
by simply using this complex W value in every formula for the matrix elements in
which the original real W appeared in the bound state calculation. The row subtraction
process is also carried out in complex arithmetic. The calculation turns out to work
very well in the complex case and leads to complex resonant state energies which are
in accord with those found by the accurate Riccati—-Pade approach [3] and also by
the hypervirial perturbation theory approach [4]. Table 4 shows some typical results
which were obtained by using the simple fixed choice W =1 + i. Since the A values
used were of relatively small magnitude the iterative method converges quickly to give
the complex eigenvalue for each I value.
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Table4 Thel=1andI=2

. A ER EI
resonant state energies for the
Tron 2, .2 4
ggm¥lt°g‘a‘l, *Dh *;‘ o é&‘_ 00 0.9844276697652552 5.011(—14)
btained using the choice W= 0.4786335047926524 2.8426265(—9)
+ i and for a basis of 50 even
parity complex basis functions 0.04 0.9674512352369713 5.965307361(—7)
as explained in Sect. 7 of the text 0.4504482756443305 4.670427976358(—3)
0.06 0.9483297726717095 1.11911527151015(—4)
0.4124540696226597 1.41422243854514(—1)
0.08 0.9259424610731429 1.5440221243205(—3)
0.3841131497773914 4.32096228521483(—1)

8 Discussion

The Niblack—Nigam algorithm, when modified as shown in the present work, turns
out to be a simple and effective method for finding both real and complex eigenvalues.
Since the original derivation of the algorithm given in [1] was unduly complicated
we have shown that a much shorter derivation is possible. Although our unorthodox
proof might at first appear to have some elements of black magic about it (since the
unknown wave function appears in the equations) it is clear that the essential element
is the separating out of the term ® which must be orthogonal to the unperturbed state
| I). A purist might well argue that, since in the standard Eq. (2) the choices €(n + 1)
and ¥ (n) would be the obvious (indeed, necessary) ones to set up an iterative process,
then in setting up an iterative version of Eq. (1) we should use the term ®(n) instead
of @ in Eq. (3), thus allowing the wave function to evolve as well as the energy. The
fortunate consequence of the approach used here is that the use of such an alternative
form of Eq. (3) makes no difference to the resulting method for calculating the eigen-
value! In Sect. 6 we have shown that we are still able to obtain useful information
about the normalized eigenvectors by using purely numerical calculations involving
the eigenvalues. It is, of course, possible to use inverse iteration to find a full eigen-
vector once the corresponding eigenvalue has been found; in another work we have
actually used complex inverse iteration to study a variety of resonant states [5].

The numerical results show that, although the method described uses some of the
traditional language of perturbation theory, the sequence of energy estimates obtained
as €(0) varies is not that of any of the traditional perturbation techniques. In the present
work, we only cite a few references, since there are very few to cite. This work appears
to be the first one to have made an analysis or application of the Niblack—Nigam algo-
rithm since its original appearance in 1970.
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